Multi-layer mutually reinforced random walk with hidden parameters for improved multi-party meeting summarization

نویسندگان

  • Yun-Nung Chen
  • Florian Metze
چکیده

This paper proposes an improved approach of summarization for spoken multi-party interaction, in which a multi-layer graph with hidden parameters is constructed. The graph includes utterance-to-utterance relation, utterance-to-parameter weight, and speaker-to-parameter weight. Each utterance and each speaker are represented as a node in the utterance-layer and speaker-layer of the graph respectively. We use terms/ topics as hidden parameters for estimating utterance-to-parameter and speaker-to-parameter weight, and compute topical similarity between utterances as the utterance-to-utterance relation. By withinand between-layer propagation in the graph, the scores from different layers can be mutually reinforced so that utterances can automatically share the scores with the utterances from the speakers who focus on similar terms/ topics. For both ASR output and manual transcripts, experiments confirmed the efficacy of including hidden parameters and involving speaker information in the multi-layer graph for summarization. We find that choosing latent topics as hidden parameters significantly reduces computational complexity and does not hurt the performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prosody-Based Unsupervised Speech Summarization with Two-Layer Mutually Reinforced Random Walk

This paper presents a graph-based model that integrates prosodic features into an unsupervised speech summarization framework without any lexical information. In particular it builds on previous work using mutually reinforced random walks, in which a two-layer graph structure is used to select the most salient utterances of a conversation. The model consists of one layer of utterance nodes and ...

متن کامل

Intra-Speaker Topic Modeling for Improved Multi-Party Meeting Summarization with Integrated Random Walk

This paper proposes an improved approach to extractive summarization of spoken multi-party interaction, in which integrated random walk is performed on a graph constructed on topical/ lexical relations. Each utterance is represented as a node of the graph, and the edges’ weights are computed from the topical similarity between the utterances, evaluated using probabilistic latent semantic analys...

متن کامل

Integrating Intra-Speaker Topic Modeling and Temporal-Based Inter-Speaker Topic Modeling in Random Walk for Improved Multi-Party Meeting Summarization

This paper proposes an improved approach of summarization for spoken multi-party interaction, in which intra-speaker and inter-speaker topics are modeled in a graph constructed with topical relations. Each utterance is represented as a node of the graph and the edge between two nodes is weighted by the similarity between the two utterances, which is topical similarity evaluated by probabilistic...

متن کامل

Affinity-Preserving Random Walk for Multi-Document Summarization

Multi-document summarization provides users with a short text that summarizes the information in a set of related documents. This paper introduces affinitypreserving random walk to the summarization task, which preserves the affinity relations of sentences by an absorbing random walk model. Meanwhile, we put forward adjustable affinity-preserving random walk to enforce the diversity constraint ...

متن کامل

Decayed DivRank for Guided Summarization

Guided summarization is essentially an aspect-based multi-document summarization, where aspects can be taken as specified queries in summarization. We proposed a novel ranking algorithm, Decayed DivRank (DDRank) for guided summarization tasks of TAC2011. DDRank can address relevance, importance, diversity, and novelty simultaneously through a decayed vertex-reinforced random walk process in sen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013